
2N3053

AMPLIFIERS AND SWITCH

DESCRIPTION

The 2N3053 is a silicon planar epitaxial NPN transistor in Jedec TO-39 metal case, intended for medium-current switching and amplifier applications.

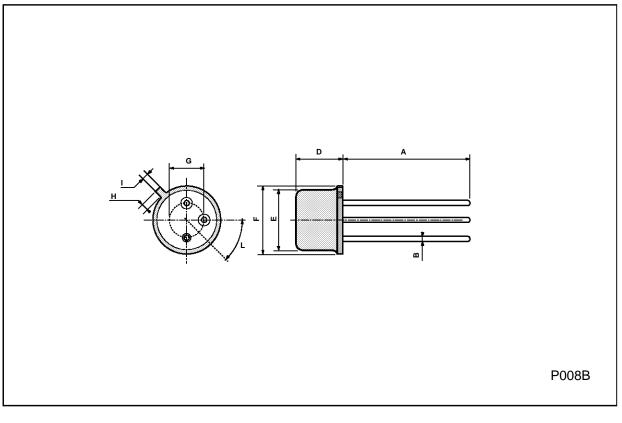
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base Voltage $(I_E = 0)$	60	V
V _{CEO}	Collector-emitter Voltage ($I_B = 0$)	40	V
V _{EBO}	Emitter-base Voltage ($I_c = 0$)	5	V
Ι _C	Collector Current	700	mA
Ptot	Total Power Dissipation at $T_{case} \leq 25~^\circ\!C$	5	W
T_{stg}, T_j	Storage and Junction Temperature	– 65 to 200	°C

THERMAL DATA

R _{th j-case}	Thermal Resistance Junction-case	Max	35	°C/W
------------------------	----------------------------------	-----	----	------

ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C unless otherwise specified)


Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
I _{CEX}	Collector Cutoff Current $(V_{BE} = -1.5 \text{ V})$	V _{CE} = 60 V				250	nA
V(_{BR)CBO}	Collector-base Breakdown Voltage (I _E = 0)	I _C = 100 μA		60			V
V _{(BR)CEO}	Collector-emitter Breakdown Voltage (I _B = 0)	I _C = 100 μA		40			V
$V_{(BR)CER}^{*}$	Collector-emitter Breakdown Voltage ($R_{BE} \le 10 \Omega$)	I _C = 10 mA		50			V
V(_{BR)EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = 100 μA		5			V
V _{CE(sat)} *	Collector-emitter Saturation Voltage	I _C = 150 mA	I _B = 15 mA			1.4	V
V _{BE} *	Base-emitter Voltage	I _C = 150 mA	$V_{CE} = 2.5 V$			1.7	V
V _{BE(sat)} *	Base-emitter Saturation Voltage	I _C = 150 mA	I _B = 15 mA			1.7	V
h _{FE} *	DC Current Gain	I _C = 150 mA I _C = 150 mA	V _{CE} = 2.5 V V _{CE} = 10 V	25 50		250	
f _T	Transition Frequency	I _C = 50 mA f = 20 MHz	$V_{CE} = 10 V$		100		MHz
C _{EBO}	Emitter-base Capacitance	$I_{C} = 0$ f = 1 MHz	V _{EB} = 0.5 V			80	pF
C _{CBO}	Collector-base Capacitance	I _E = 0 f = 1 MHz	V _{CB} = 10 V			15	pF

 * Pulse : pulse duration = 300 $\mu s,$ duty cycle = 1 %.

22	993	28	222	288	88	235	88	255	222		225	22	000	23	$\dot{\omega}$	22	22	22	82	22	<u> 22</u>	855	22	22	12	223		22		22		22	23		82		22	200		223		
87	12	- 64		- 2	97	- 11	ς.	63	а.	10	28	ж.		æ		5		86	97	- 15	83		28			8	κ.	4	82	615				222	Ξ.	÷.			89	. 9		
~	•	- 1	÷.	8	664	•	2.4	-	а 1	17	ALC:			8	683			а.		х.	88				а.					88			80	10			- 14	20		Δ.	60	
88	8	83	1		80		64	27	88	w	88	а.	926	85	1.0	2		8	P		10	63			۰.	202	17		۰.		225	E	2	17		х.	82	63			÷.,	
83	-82	92	5.0	- 22	×.	- 66	8.	- 66	80	Π.	888	2.77	22.0	82	2.00	- 60	27	- 20	20	88	-00	5 C (88	53	з.		æ.,		85				22	86.	-	80	82	200	8.65	88	255	

DIM.		mm		inch										
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.								
А	12.7			0.500										
В			0.49			0.019								
D			6.6			0.260								
E			8.5			0.334								
F			9.4			0.370								
G	5.08			0.200										
н			1.2			0.047								
I			0.9			0.035								
L			45°	(typ.)										

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

